Optical coefficient measurements using bulk living tissue with optical fiber puncture

Haruna Nakazawa, Marika Doi, Emiyu Ogawa, Tsunenori Arai

研究成果: Article査読


Slicing sample preparation in tissue optical characteristic measurement may makes huge error over individual optical differences. We proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying detection numerical aperture and ray tracing calculation to avoid slicing degradation of living tissue. To reveal the characteristics of this measurement, optical coefficients of pig myocardium obtained by the IAD method with slicing living tissue sample preparation and proposed measurement method were compared. In the proposed method, a silica fiber installed in an18G needle was punctured up to the bottom of the myocardial bulk tissue to measure light intensity in the bulk tissue changing depth and numerical aperture. The author found that measured apparent attenuation coefficients tended to strongly depend on numerical aperture. The ray trace calculation explained the same numerical aperture tendency in above mentioned experimental result. Optical characteristics of sliced myocardial samples revealed temporal change due to dehydration.

ジャーナルTransactions of Japanese Society for Medical and Biological Engineering
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 生体医工学


「Optical coefficient measurements using bulk living tissue with optical fiber puncture」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。