Optimal experimental design criterion for discriminating semiparametric models

研究成果: Article査読

7 被引用数 (Scopus)

抄録

This paper studies the optimal experimental design problem to discriminate two regression models. Recently, López-Fidalgo et al. [2007. An optimal experimental design criterion for discriminating between non-normal models. J. Roy. Statist. Soc. B 69, 231-242] extended the conventional T-optimality criterion by Atkinson and Fedorov [1975a. The designs of experiments for discriminating between two rival models. Biometrika 62, 57-70; 1975b. Optimal design: experiments for discriminating between several models. Biometrika 62, 289-303] to deal with non-normal parametric regression models, and proposed a new optimal experimental design criterion based on the Kullback-Leibler information divergence. In this paper, we extend their parametric optimality criterion to a semiparametric setup, where we only need to specify some moment conditions for the null or alternative regression model. Our criteria, called the semiparametric Kullback-Leibler optimality criteria, can be implemented by applying a convex duality result of partially finite convex programming. The proposed method is illustrated by a simple numerical example.

本文言語English
ページ(範囲)4141-4150
ページ数10
ジャーナルJournal of Statistical Planning and Inference
138
12
DOI
出版ステータスPublished - 2008 12 1
外部発表はい

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty
  • Applied Mathematics

フィンガープリント 「Optimal experimental design criterion for discriminating semiparametric models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル