Optimal partitioning of probability distributions under general convex loss functions in selective assembly

研究成果: Article査読

13 被引用数 (Scopus)

抄録

Selective assembly is an effective approach for improving the quality of a product which is composed of two mating components. This article studies optimal partitioning of the dimensional distributions of the components in selective assembly. It extends previous results for squared error loss function to cover general convex loss functions, including asymmetric convex loss functions. Equations for the optimal partition are derived. Assuming that the density function of the dimensional distribution is log-concave, uniqueness of solutions is established and some properties of the optimal partition are shown. Some numerical results compare the optimal partition with some heuristic partitioning schemes.

本文言語English
ページ(範囲)1545-1560
ページ数16
ジャーナルCommunications in Statistics - Theory and Methods
40
9
DOI
出版ステータスPublished - 2011 1 1
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率

フィンガープリント

「Optimal partitioning of probability distributions under general convex loss functions in selective assembly」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル