Optimization Neural Networks for the Segmentation of Magnetic Resonance Images

S. C. Amartur, D. Piraino, Y. Takefuji

研究成果: Article査読

133 被引用数 (Scopus)

抄録

Segmentation of the images obtained from magnetic resonance imaging (MRI) is an important step in the visualization of soft tissues in the human body. The multispectral nature of the MRI has been exploited in the past to obtain better performance in the segmentation process. The new emerging field of artificial neural networks promises to provide unique solutions for the pattern classification of medical images. In this preliminary study, we report the application of Hopfield neural network for the multispectral unsupervised classification of MR images. We have used winner-take-all neurons to obtain a crisp classification map using proton density-weighted and T2-weighted images in the head. The preliminary studies indicate that the number of iterations to reach “good” solutions was nearly constant with the number of clusters chosen for the problem.

本文言語English
ページ(範囲)215-220
ページ数6
ジャーナルIEEE Transactions on Medical Imaging
11
2
DOI
出版ステータスPublished - 1992 6月
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 放射線技術および超音波技術
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Optimization Neural Networks for the Segmentation of Magnetic Resonance Images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル