Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique

Tomohisa Seki, Tomoyoshi Tamura, Masaru Suzuki

研究成果: Article


Background: Outcome prediction for patients with out-of-hospital cardiac arrest (OHCA) has the possibility to detect patients who could have been potentially saved. Advanced machine learning techniques have recently been developed and employed for clinical studies. In this study, we aimed to establish a prognostication model for OHCA with presumed cardiac aetiology using an advanced machine learning technique. Methods and Results: Cohort data from a prospective multi-centre cohort study for OHCA patients transported by an ambulance in the Kanto area of Japan between January 2012 and March 2013 (SOS-KANTO 2012 study) were analysed in this study. Of 16,452 patients, data for OHCA patients aged ≥18 years with presumed cardiac aetiology were retrieved, and were divided into two groups (training set: n = 5718, between January 1, 2012 and December 12, 2012; test set: n = 1608, between January 1, 2013 and March 31, 2013). Of 421 variables observed during prehospital and emergency department settings, 35 prehospital variables, or 35 prehospital and 18 in-hospital variables, were used for outcome prediction of 1-year survival using a random forest method. In validation using the test set, prognostication models trained with 35 variables, or 53 variables for 1-year survival showed area under the receiver operating characteristics curve (AUC) values of 0.943 (95% CI [0.930, 0.955]) and 0.958 (95% CI [0.948, 0.969]), respectively. Conclusions: The advanced machine learning technique showed favourable prediction capability for 1-year survival of OHCA with presumed cardiac aetiology. These models can be useful for detecting patients who could have been potentially saved.

出版物ステータスPublished - 2019 8 1


ASJC Scopus subject areas

  • Emergency Medicine
  • Emergency
  • Cardiology and Cardiovascular Medicine