Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1

Eiichi Tokuda, Eriko Okawa, Shunsuke Watanabe, Shin Ichi Ono

研究成果: Article査読

27 被引用数 (Scopus)

抄録

Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1G93A). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1G93A mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1G93A mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1G93A mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.

本文言語English
論文番号ddt517
ジャーナルHuman molecular genetics
23
5
DOI
出版ステータスPublished - 2014 3 1

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

フィンガープリント 「Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル