TY - JOUR
T1 - Oxidized Phospholipids and Neutrophil Elastase Coordinately Play Critical Roles in NET Formation
AU - Tokuhiro, Takuto
AU - Ishikawa, Akane
AU - Sato, Haruka
AU - Takita, Shunya
AU - Yoshikawa, Ayuri
AU - Anzai, Ryoko
AU - Sato, Shinichi
AU - Aoyagi, Ryohei
AU - Arita, Makoto
AU - Shibuya, Takumi
AU - Aratani, Yasuaki
AU - Shimizu, Shigeomi
AU - Tanaka, Masato
AU - Yotsumoto, Satoshi
N1 - Funding Information:
This work was supported in part by a Grants-in-Aid for Scientific Research (C) (19K08894 to SY) from Japan Society for the Promotion of Science, AMED-CREST, AMED under Grant Number JP20gm1210002 (to MT).
Publisher Copyright:
© Copyright © 2021 Tokuhiro, Ishikawa, Sato, Takita, Yoshikawa, Anzai, Sato, Aoyagi, Arita, Shibuya, Aratani, Shimizu, Tanaka and Yotsumoto.
PY - 2021/9/9
Y1 - 2021/9/9
N2 - Neutrophil extracellular traps (NETs) are web-like structures consisting of decondensed chromatin DNA and contents of granules, such as myeloperoxidase (MPO) and neutrophil elastase (NE). NETs are usually released from neutrophils undergoing NETosis, a neutrophil-specific cell death mode characterized by the collapse and disappearance of cell membranes and nuclear envelopes. It is well known that production of reactive oxygen species (ROS) triggers NETosis and NET formation. However, details of intracellular signaling downstream of ROS production during NETosis and NET formation remains uncertain. Here, we demonstrated that the peroxidation of phospholipids plays a critical role in NETosis and NET formation induced by phorbol 12-myristate13-acetate (PMA) or immune complex in vitro and by lipopolysaccharide (LPS) in vivo. This phospholipid peroxidation is mediated by the enzymatic activity of MPO. On the other hand, NE, which was previously reported to be released from granules to cytosol by MPO during NET formation, is not required for either the peroxidation of phospholipids or the execution of NETosis, but contributes to chromatin decondensation and nuclear swelling independently of MPO-mediated oxidized phospholipids. Analysis of isolated nuclei clearly demonstrated that oxidized phospholipids and NE differently yet synergistically execute chromatin decondensation and nuclear swelling, and the subsequent release of nuclear contents. These findings indicate the dual roles of MPO in NETosis and NET formation, and provide new insight into the molecular mechanism of these phenomena.
AB - Neutrophil extracellular traps (NETs) are web-like structures consisting of decondensed chromatin DNA and contents of granules, such as myeloperoxidase (MPO) and neutrophil elastase (NE). NETs are usually released from neutrophils undergoing NETosis, a neutrophil-specific cell death mode characterized by the collapse and disappearance of cell membranes and nuclear envelopes. It is well known that production of reactive oxygen species (ROS) triggers NETosis and NET formation. However, details of intracellular signaling downstream of ROS production during NETosis and NET formation remains uncertain. Here, we demonstrated that the peroxidation of phospholipids plays a critical role in NETosis and NET formation induced by phorbol 12-myristate13-acetate (PMA) or immune complex in vitro and by lipopolysaccharide (LPS) in vivo. This phospholipid peroxidation is mediated by the enzymatic activity of MPO. On the other hand, NE, which was previously reported to be released from granules to cytosol by MPO during NET formation, is not required for either the peroxidation of phospholipids or the execution of NETosis, but contributes to chromatin decondensation and nuclear swelling independently of MPO-mediated oxidized phospholipids. Analysis of isolated nuclei clearly demonstrated that oxidized phospholipids and NE differently yet synergistically execute chromatin decondensation and nuclear swelling, and the subsequent release of nuclear contents. These findings indicate the dual roles of MPO in NETosis and NET formation, and provide new insight into the molecular mechanism of these phenomena.
KW - myeloperoxidase (MPO)
KW - neutrophil (PMN)
KW - neutrophil elastase (NE)
KW - neutrophil extra cellular traps
KW - oxidized phospholipid
UR - http://www.scopus.com/inward/record.url?scp=85115626927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115626927&partnerID=8YFLogxK
U2 - 10.3389/fcell.2021.718586
DO - 10.3389/fcell.2021.718586
M3 - Article
AN - SCOPUS:85115626927
SN - 2296-634X
VL - 9
JO - Frontiers in Cell and Developmental Biology
JF - Frontiers in Cell and Developmental Biology
M1 - 718586
ER -