Parabolicity, projective volume and finiteness of total curvature of minimal surfaces

研究成果: Article

1 引用 (Scopus)

抄録

We show that finiteness of a projective volume implies finiteness of total curvature for stochastic complete minimal surfaces with finite number of ends and finite genus which may not be geodesically complete. The tools we use include simple stochastic calculus and Nevanlinna theoretic method.

元の言語English
ページ(範囲)227-236
ページ数10
ジャーナルKodai Mathematical Journal
27
発行部数3
DOI
出版物ステータスPublished - 2004

Fingerprint

Total curvature
Minimal surface
Finiteness
Stochastic Calculus
Genus
Imply

ASJC Scopus subject areas

  • Mathematics(all)

これを引用

@article{f7c3bc1415ff4b9abc14b801c30a5550,
title = "Parabolicity, projective volume and finiteness of total curvature of minimal surfaces",
abstract = "We show that finiteness of a projective volume implies finiteness of total curvature for stochastic complete minimal surfaces with finite number of ends and finite genus which may not be geodesically complete. The tools we use include simple stochastic calculus and Nevanlinna theoretic method.",
keywords = "Brownian motion, Minimal surface, Nevanlinna theory",
author = "Atsushi Atsuji",
year = "2004",
doi = "10.2996/kmj/1104247348",
language = "English",
volume = "27",
pages = "227--236",
journal = "Kodai Mathematical Journal",
issn = "0386-5991",
publisher = "Tokyo Institute of Technology",
number = "3",

}

TY - JOUR

T1 - Parabolicity, projective volume and finiteness of total curvature of minimal surfaces

AU - Atsuji, Atsushi

PY - 2004

Y1 - 2004

N2 - We show that finiteness of a projective volume implies finiteness of total curvature for stochastic complete minimal surfaces with finite number of ends and finite genus which may not be geodesically complete. The tools we use include simple stochastic calculus and Nevanlinna theoretic method.

AB - We show that finiteness of a projective volume implies finiteness of total curvature for stochastic complete minimal surfaces with finite number of ends and finite genus which may not be geodesically complete. The tools we use include simple stochastic calculus and Nevanlinna theoretic method.

KW - Brownian motion

KW - Minimal surface

KW - Nevanlinna theory

UR - http://www.scopus.com/inward/record.url?scp=61449097875&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=61449097875&partnerID=8YFLogxK

U2 - 10.2996/kmj/1104247348

DO - 10.2996/kmj/1104247348

M3 - Article

AN - SCOPUS:61449097875

VL - 27

SP - 227

EP - 236

JO - Kodai Mathematical Journal

JF - Kodai Mathematical Journal

SN - 0386-5991

IS - 3

ER -