Perfect matchings avoiding prescribed edges in a star-free graph

Yoshimi Egawa, Jun Fujisawa, Michael D. Plummer, Akira Saito, Tomoki Yamashita

研究成果: Article査読

抄録

Aldred and Plummer (1999) have proved that every m-connected K1,m-k+2-free graph of even order contains a perfect matching which avoids k prescribed edges. They have also proved that the result is best possible in the range 1≤k≤12(m+1). In this paper, we show that if 12(m+2)≤k≤m-1, their result is not best possible. We prove that if m≥4 and 12(m+2)≤k≤m-1, every K1,⌈2m-k+43⌉-free graph of even order contains a perfect matching which avoids k prescribed edges. While this is a best possible result in terms of the order of a forbidden star, if 2m-k+4≡0(mod3), we also prove that only finitely many sharpness examples exist.

本文言語English
ページ(範囲)2260-2274
ページ数15
ジャーナルDiscrete Mathematics
338
12
DOI
出版ステータスPublished - 2015 6 22

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Perfect matchings avoiding prescribed edges in a star-free graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル