### 抜粋

In the restricted three body problem, each of the Lagrange points is in equilibrium between gravitational forces of the two primary bodies and centrifugal force in the rotating frame. A non-equilibrium point, which is not at Lagrange points, can be turned into an artificial equilibrium point (AEP) by canceling any residual acceleration at the non-equilibrium points with continuous control acceleration. This study describes an investigation of periodic orbits around the AEPs in the restricted three body problem. The non-linearized equations of motion in this problem are linearized around the AEPs, and periodic orbits are generated by simple constant control acceleration in three-dimensional space.

元の言語 | English |
---|---|

ホスト出版物のタイトル | Proceedings of SICE Annual Conference 2008 - International Conference on Instrumentation, Control and Information Technology |

ページ | 2607-2611 |

ページ数 | 5 |

DOI | |

出版物ステータス | Published - 2008 12 1 |

外部発表 | Yes |

イベント | SICE Annual Conference 2008 - International Conference on Instrumentation, Control and Information Technology - Tokyo, Japan 継続期間: 2008 8 20 → 2008 8 22 |

### 出版物シリーズ

名前 | Proceedings of the SICE Annual Conference |
---|

### Other

Other | SICE Annual Conference 2008 - International Conference on Instrumentation, Control and Information Technology |
---|---|

国 | Japan |

市 | Tokyo |

期間 | 08/8/20 → 08/8/22 |

### ASJC Scopus subject areas

- Control and Systems Engineering
- Computer Science Applications
- Electrical and Electronic Engineering

## フィンガープリント Periodic orbits with constant control acceleration in the restricted three body problem' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

*Proceedings of SICE Annual Conference 2008 - International Conference on Instrumentation, Control and Information Technology*(pp. 2607-2611). [4655106] (Proceedings of the SICE Annual Conference). https://doi.org/10.1109/SICE.2008.4655106