TY - JOUR
T1 - Photoluminescence enhancement of PEG-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method
AU - Kasuya, Ryo
AU - Isobe, Tetsuhiko
AU - Kuma, Hitoshi
AU - Katano, Junichi
PY - 2005/12/1
Y1 - 2005/12/1
N2 - Y3A1 5O12:Ce3+ (YAG:Ce3+) nanocrystals were synthesized in 1,4-butylene glycol (BG) with and without poly(ethylene glycol) (PEG) by the glycothermal method. The internal quantum efficiency of the photoluminescence (PL) corresponding to the 5d →4f transition of Ce3+in the YAG:Ce3+nanocrystal increased from 21.3 to 37.9% by addition of PEG, while no appreciable change in the primary particle size, the crystallite size, and the lattice distortion was recognized by transmission electron microscopy and X-ray diffractometry. The thermogravimetry-differential thermal analysis, Fourier transform infrared absorption spectroscopy and 1H → 13C cross-polarization magic angle spinning nuclear magnetic resonance (CP-MAS NMR) confirmed the preferential coordination of PEG to the YAG:Ce3+ nanocrystal. 27 A1 single-pulse excitation MAS NMR reveals that the ratio of the 4-fold coordination site to the 6-fold coordination site increased from 0.53 to 0.72 by addition of PEG. We conclude that the surface modification of the YAG:Ce3+ nanocrystal by PEG induces the surface passivation, the prevention of the oxidation of Ce3+ to Ce4+, the promotion of the incorporation of Ce3+ into YAG and the local structural rearrangement, resulting in the PL enhancement.
AB - Y3A1 5O12:Ce3+ (YAG:Ce3+) nanocrystals were synthesized in 1,4-butylene glycol (BG) with and without poly(ethylene glycol) (PEG) by the glycothermal method. The internal quantum efficiency of the photoluminescence (PL) corresponding to the 5d →4f transition of Ce3+in the YAG:Ce3+nanocrystal increased from 21.3 to 37.9% by addition of PEG, while no appreciable change in the primary particle size, the crystallite size, and the lattice distortion was recognized by transmission electron microscopy and X-ray diffractometry. The thermogravimetry-differential thermal analysis, Fourier transform infrared absorption spectroscopy and 1H → 13C cross-polarization magic angle spinning nuclear magnetic resonance (CP-MAS NMR) confirmed the preferential coordination of PEG to the YAG:Ce3+ nanocrystal. 27 A1 single-pulse excitation MAS NMR reveals that the ratio of the 4-fold coordination site to the 6-fold coordination site increased from 0.53 to 0.72 by addition of PEG. We conclude that the surface modification of the YAG:Ce3+ nanocrystal by PEG induces the surface passivation, the prevention of the oxidation of Ce3+ to Ce4+, the promotion of the incorporation of Ce3+ into YAG and the local structural rearrangement, resulting in the PL enhancement.
UR - http://www.scopus.com/inward/record.url?scp=29144473587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=29144473587&partnerID=8YFLogxK
U2 - 10.1021/jp052753j
DO - 10.1021/jp052753j
M3 - Article
C2 - 16853879
AN - SCOPUS:29144473587
VL - 109
SP - 22126
EP - 22130
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 47
ER -