Polyhedral Proof of a Characterization of Perfect Bidirected Graphs

Yoshiko T. Ikebe, Akihisa Tamura

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Bidirected graphs which are generalizations of undirected graphs, have three types of edges: (+, +)-edges, (-, -)-edges and (+, -)-edges. Undirected graphs are regarded as bidirected graphs whose edges are all of type (+, +). The notion of perfection of undirected graphs can be naturally extended to bidirected graphs in terms of polytopes. The fact that a bidirected graph is perfect if and only if the undirected graph obtained by replacing all edges to (+, +) is perfect was independently proved by several researchers. This paper gives a polyhedral proof of the fact and introduces some new knowledge on perfect bidirected graphs.

本文言語English
ページ(範囲)1000-1007
ページ数8
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E86-A
5
出版ステータスPublished - 2003 5
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Polyhedral Proof of a Characterization of Perfect Bidirected Graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル