Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets

Kazunari Higa, Naomi Takeshima, Fumika Moro, Tetsuya Kawakita, Motoko Kawashima, Makoto Demura, Jun Shimazaki, Tetsuo Asakura, Kazuo Tsubota, Shigeto Shimmura

研究成果: Article査読

59 被引用数 (Scopus)

抄録

Biological carriers, such as the amniotic membrane and serum-derived fibrin, are currently used to deliver cultivated corneal epithelial sheets to the ocular surface. Such carriers require being transparent and allowing the diffusion of metabolites in order to maintain a healthy ocular surface. However, safety issues concerning biological agents encouraged the development of safer, biocompatible materials as cell carriers. We examined the application of porous silk fibroin films with high molecular permeability prepared by mixing silk fibroin and poly(ethylene glycol) (PEG), and then removal of PEG from the silk-PEG films. Molecular permeability of porous silk fibroin film is higher than untreated silk fibroin film. Epithelial cells were isolated from rabbit limbal epithelium, and seeded onto silk fibroin coated wells and co-cultured with mitomycin C-treated 3T3 fibroblasts. Stratified epithelial sheets successfully engineered on porous silk fibroin film expressed the cornea-specific cytokeratins K3 and K12, as well as the corneal epithelial marker pax6. Basement membrane components such as type-IV collagen and integrin β1 were expressed in the stratified epithelial sheets. Further more, colony-forming efficiency of dissociated cells was similar to primary corneal epithelial cells showing that progenitor cells were preserved. The biocompatibility of fibroin films was confirmed in rabbit corneas for up to 6 months. Porous silk fibroin film is a highly transparent, biocompatible material that may be useful as a carrier of cultivated epithelial sheets in the regeneration of corneal epithelium.

本文言語English
ページ(範囲)2261-2276
ページ数16
ジャーナルJournal of Biomaterials Science, Polymer Edition
22
17
DOI
出版ステータスPublished - 2011
外部発表はい

ASJC Scopus subject areas

  • 生物理学
  • バイオエンジニアリング
  • 生体材料
  • 生体医工学

フィンガープリント

「Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル