Positive open book decompositions of Stein fillable 3-manifolds along prescribed links

研究成果: Article査読

抄録

It is known by Loi and Piergallini that a closed, oriented, smooth 3-manifold is Stein fillable if and only if it has a positive open book decomposition. In the present paper we will show that for every link L in a Stein fillable 3-manifold there exists an additional knot L′ to L such that the link L ∪ L′ is the binding of a positive open book decomposition of the Stein fillable 3-manifold. To prove the assertion, we will use the divide, which is a generalization of real morsification theory of complex plane curve singularities, and 2-handle attachings along Legendrian curves.

本文言語English
ページ(範囲)325-342
ページ数18
ジャーナルTopology
45
2
DOI
出版ステータスPublished - 2006 3
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Positive open book decompositions of Stein fillable 3-manifolds along prescribed links」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル