Predicting and attending to damaging collisions for placing everyday objects in photo-realistic simulations

Aly Magassouba, Komei Sugiura, Angelica Nakayama, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi, Hisashi Kawai

研究成果: Article査読

抄録

Placing objects is a fundamental task for domestic service robots (DSRs). Thus, inferring the collision-risk before a placing motion is crucial for achieving the requested task. This problem is particularly challenging because it is necessary to predict what happens if an object is placed in a cluttered designated area. We show that a rule-based approach that uses plane detection, to detect free areas, performs poorly. To address this, we develop PonNet, which has multimodal attention branches and a self-attention mechanism to predict damaging collisions, based on RGBD images. Our method can visualize the risk of damaging collisions, which is convenient because it enables the user to understand the risk. For this purpose, we build and publish an original dataset that contains 12,000 photo-realistic images of specific placing areas, with daily life objects, in home environments. The experimental results show that our approach improves accuracy compared with the baseline methods.

本文言語English
ページ(範囲)787-799
ページ数13
ジャーナルAdvanced Robotics
35
12
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • 人間とコンピュータの相互作用
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用

フィンガープリント

「Predicting and attending to damaging collisions for placing everyday objects in photo-realistic simulations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル