Prediction model of the flow properties inside a tube during hydrogen leakage

Yuri Nagase, Yuta Sugiyama, Shiro Kubota, Tei Saburi, Akiko Matsuo

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We numerically investigated high-pressure hydrogen leakage from transportation facilities, focusing on the steady mass flow rate and pressure distribution in a tube during the leakage. We studied steady leakage from a square opening in a square duct as well as leakage from a ruptured cylindrical tube with unsteady closure of a cutoff valve from fully open. A prediction model for the mass flow rate and pressure distribution inside the tube was proposed; such a model would help prevent physical hazards during an accident. We considered changes in the physical quantities according to the fluid dynamics occurring inside the tube. The flow properties were divided into two phases: (i) the unsteady expansion wave propagating inside a tube filled with hydrogen and (ii) the acceleration of hydrogen due to the reduction in the cross-sectional area between the tube and the leakage opening. To close the prediction model, we introduced contraction coefficient models depending on how the hydrogen leakage occurred. The mass flow rate and pressure drop during the leakage estimated by our prediction model showed good agreement with numerical simulation results when the contraction coefficient model was appropriately chosen. This model is considered highly applicable to the construction condition of pressure sensors, the operating conditions of a valve, and the prediction of mass flow rate during an accident.

本文言語English
論文番号103955
ジャーナルJournal of Loss Prevention in the Process Industries
62
DOI
出版ステータスPublished - 2019 11

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 食品科学
  • 化学工学(全般)
  • 安全性、リスク、信頼性、品質管理
  • エネルギー工学および電力技術
  • 経営科学およびオペレーションズ リサーチ
  • 産業および生産工学

フィンガープリント

「Prediction model of the flow properties inside a tube during hydrogen leakage」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル