Preparation of thermosensitive polymer nanoparticles by protein-mimetic cross-linking

Sachiko Kaihara, Masatoshi Narikawa, Keiji Fujimoto

研究成果: Article査読

4 被引用数 (Scopus)


Thermosensitive nanoparticles were prepared by mimicking protein folding where polymer aggregates were formed by precipitation of thermosensitive polymer chains followed by disulfide formation of their thiol groups. N-Isopropylacrylamide (NIPAM) and methacryloxy succini-mide (SuMA) were co-polymerized and then cysteamine was allowed to react with succinimide moieties of the polymer to render thiol moieties. A polymer aqueous solution precipitated to form nano-sized aggregates by increasing temperature above its lower critical solution temperature (LCST), and their sizes were monodispersed and tunable by the polymer concentration. The aggregates were cross-linked to produce nanoparticles by oxidation of thiol groups in a manner similar to formation of a disulfide bond of protein. As a result, the cross-linked nanoparticles exhibited swelling by decreasing temperature below the LCST of the copolymer. Fluorescein and bovine serum albumin (BSA) were chosen as a small and a large substance, respectively, and were encapsulated into the swollen nanoparticles at 25 °C. Fluorescein was rapidly released from both swollen and shrunken nanoparticles. Although BSA exhibited little release at any temperatures, it was released from nanopar-ticles by adding the reducing agent to dissociate the disul-fide cross-linking and incubating below the LCST.

ジャーナルColloid and Polymer Science
出版ステータスPublished - 2012 8月

ASJC Scopus subject areas

  • 物理化学および理論化学
  • ポリマーおよびプラスチック
  • コロイド化学および表面化学
  • 材料化学


「Preparation of thermosensitive polymer nanoparticles by protein-mimetic cross-linking」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。