Projection-based dual averaging for stochastic sparse optimization

Asahi Ushio, Masahiro Yukawa

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

We present a variant of the regularized dual averaging (RDA) algorithm for stochastic sparse optimization. Our approach differs from the previous studies of RDA in two respects. First, a sparsity-promoting metric is employed, originated from the proportionate-type adaptive filtering algorithms. Second, the squared-distance function to a closed convex set is employed as a part of the objective functions. In the particular application of online regression, the squared-distance function is reduced to a normalized version of the typical squared-error (least square) function. The two differences yield a better sparsity-seeking capability, leading to improved convergence properties. Numerical examples show the advantages of the proposed algorithm over the existing methods including ADAGRAD and adaptive proximal forward-backward splitting (APFBS).

本文言語English
ホスト出版物のタイトル2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2307-2311
ページ数5
ISBN(電子版)9781509041176
DOI
出版ステータスPublished - 2017 6月 16
イベント2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
継続期間: 2017 3月 52017 3月 9

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

Other

Other2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
国/地域United States
CityNew Orleans
Period17/3/517/3/9

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Projection-based dual averaging for stochastic sparse optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル