Proliferation of calf chondrocyte on stainless-steel surfaces with different microtopography

Yuta Kurashina, Takumi Hamano, Shogo Miyata, Jun Komotori, Tadayoshi Koyama

研究成果: Article査読

11 被引用数 (Scopus)

抄録

In this study, we investigated the growth response of chondrocytes on a metallic cell culture device with different microtopographies. Two different topographies were generated on 316L stainless steel by fine particle peening (FPP) treatment using either glass or alumina shot particles. Glass particles provided surface of micro asperities at low frequency spacing, whereas alumina provided surface micro asperities at high frequency spacing. Calf chondrocytes were seeded and cultured on both treated and smooth stainless steel surfaces. The cells were then counted. Based on the results, the FPP-treated surfaces showed better cell proliferation and denser filopodia compared to the polished surface, indicating that the micro asperities on the surface of the plate encouraged cell proliferation and adhesion. The number of cells observed on the FPP-treated surface depended on the shape of the asperities formed by FPP treatment, and alumina-treated surface had the highest cell counts. Cell distribution assay indicated that cells growing on the alumina-treated surface migrated easily. In addition, when the alumina-treated surface was used as a cell culture dish to incubate chondrocytes, cell proliferation was similar to that of obtained using polymeric culture dishes, demonstrating that FPP-treated surfaces are appropriate for use in cell culture dishes.

本文言語English
ページ(範囲)170-176
ページ数7
ジャーナルNippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
78
4
DOI
出版ステータスPublished - 2014 4月

ASJC Scopus subject areas

  • 凝縮系物理学
  • 材料力学
  • 金属および合金
  • 材料化学

フィンガープリント

「Proliferation of calf chondrocyte on stainless-steel surfaces with different microtopography」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル