Proximity theorems of discrete convex functions

Kazuo Murota, Akihisa Tamura

研究成果: Article査読

7 被引用数 (Scopus)

抄録

A proximity theorem is a statement that, given an optimization problem and its relaxation, an optimal solution to the original problem exists in a certain neighborhood of a solution to the relaxation. Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete resource allocation problems. After reviewing the recent results for L-convex and M-convex functions, this paper establishes proximity theorems for larger classes of discrete convex functions, L2-convex functions and M 2-convex functions, that are relevant to the polymatroid intersection problem and the submodular flow problem.

本文言語English
ページ(範囲)539-562
ページ数24
ジャーナルMathematical Programming
99
3
DOI
出版ステータスPublished - 2004 4月
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 数学 (全般)

フィンガープリント

「Proximity theorems of discrete convex functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル