Quantum Functionalities Via Feedback Amplification

Rion Shimazu, Naoki Yamamoto

研究成果: Article査読

抄録

Feedback amplification is a key technique for synthesizing various functionalities, especially in electronic circuits involving op amps. This paper presents a quantum version of this methodology, where the general phase-preserving quantum amplifier and coherent (i.e., measurement-free) feedback are employed to construct various types of systems having useful functionalities: quantum versions of differentiator, integrator, self-oscillator, and active filters. The class of active filters includes the Butterworth filter, which can be used to enhance the capacity of an optical quantum communication channel, and the nonreciprocal amplifier, which enables measurement of a superconducting qubits system as well as protection of it by separating input from output fields. A particularly detailed investigation is performed on the active phase-canceling filter for realizing a broadband gravitational-wave detector; that is, the feedback-amplification method is used to construct an active filter that compensates the phase delay of the signal and eventually recovers the sensitivity in the high-frequency regime.

本文言語English
論文番号044006
ジャーナルPhysical Review Applied
15
4
DOI
出版ステータスPublished - 2021 4

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Quantum Functionalities Via Feedback Amplification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル