Quantum information theory: Trading classical for quantum computation using indirection

研究成果: Chapter

抄録

Modular exponentiation is the most expensive portion of Shor’s algorithm. We show that it is possible to reduce the number of quantum modular multiplications necessary by a factor of ω, at a cost of adding temporary storage space and associated machinery for a table of 2ωentries, and performing 2ωtimes as many classical modular multiplications. The storage space may be a quantum-addressable classical memory, or pure quantum memory. With classical computation as much as 1013times as fast as quantum computation, values of ω from 2 to 30 seem attractive; physically feasible values depend on the implementation of the memory.

本文言語English
ホスト出版物のタイトルRealizing Controllable Quantum States
ホスト出版物のサブタイトルMesoscopic Superconductivity and Spintronics - In the Light of Quantum Computation
出版社World Scientific Publishing Co.
ページ316-321
ページ数6
ISBN(電子版)9789812701619
ISBN(印刷版)9789812564689
DOI
出版ステータスPublished - 2005 1月 1

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Quantum information theory: Trading classical for quantum computation using indirection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル