Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System

Hiroki Okawara, Tomonori Sawada, Daisuke Nakashima, Yuta Maeda, Shunsuke Minoji, Takashi Morisue, Yoshinori Katsumata, Morio Matsumoto, Masaya Nakamura, Takeo Nagura

研究成果: Article査読

抄録

Epidermal wearable sweat biomarker sensing technologies are likely affected by sweat rate because of the dilution effect and limited measurement methods. However, there is a dearth of reports on the local sweat rate (LSR) monitored in real-time during exercise. This explorative study investigated the feasibility of real-time LSR monitoring and clarified LSR kinetics on the forehead and upper arm during constant-load exercise using a perspiration meter with an airflow compensation system. This observational cross-sectional study included 18 recreationally trained males (mean age, 20.6 ± 0.8 years). LSR on the forehead and upper arm (mg/cm2/min) were measured during a constant-load exercise test at 25% of their pre-evaluated peak power until exhaustion. The LSR kinetics had two inflection points, with a gradual decrease in the incremental slope for each section. After the second flexion point, the LSR slope slightly decreased and was maintained until exhaustion. However, the degree of change varied among the participants. Although the ratio of forehead LSR to upper arm LSR tended to decrease gradually over time, there was little change in this ratio after a second flexion point of LSR in both. These findings suggest possible differences in LSR control between the forehead and upper arm during constant-load exercise to prolonged exhaustion.

本文言語English
論文番号5473
ジャーナルSensors
22
15
DOI
出版ステータスPublished - 2022 8月
外部発表はい

ASJC Scopus subject areas

  • 分析化学
  • 情報システム
  • 生化学
  • 原子分子物理学および光学
  • 器械工学
  • 電子工学および電気工学

フィンガープリント

「Realtime Monitoring of Local Sweat Rate Kinetics during Constant-Load Exercise Using Perspiration-Meter with Airflow Compensation System」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル