Redox regulation in respiring Saccharomyces cerevisiae

Douglas B. Murray, Ken Haynes, Masaru Tomita

研究成果: Review article査読

43 被引用数 (Scopus)

抄録

Background: In biological systems, redox reactions are central to most cellular processes and the redox potential of the intracellular compartment dictates whether a particular reaction can or cannot occur. Indeed the widespread use of redox reactions in biological systems makes their detailed description outside the scope of one review. Scope of the Review: Here we will focus on how system-wide redox changes can alter the reaction and transcriptional landscape of Saccharomyces cerevisiae. To understand this we explore the major determinants of cellular redox potential, how these are sensed by the cell and the dynamic responses elicited. Major Conclusions: Redox regulation is a large and complex system that has the potential to rapidly and globally alter both the reaction and transcription landscapes. Although we have a basic understanding of many of the sub-systems and a partial understanding of the transcriptional control, we are far from understanding how these systems integrate to produce coherent responses. We argue that this non-linear system self-organises, and that the output in many cases is temperature-compensated oscillations that may temporally partition incompatible reactions in vivo. General Significance: Redox biochemistry impinges on most of cellular processes and has been shown to underpin ageing and many human diseases. Integrating the complexity of redox signalling and regulation is perhaps one of the most challenging areas of biology. This article is part of a Special Issue entitled Systems Biology of Microorganisms.

本文言語English
ページ(範囲)945-958
ページ数14
ジャーナルBiochimica et Biophysica Acta - General Subjects
1810
10
DOI
出版ステータスPublished - 2011 10

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

フィンガープリント 「Redox regulation in respiring Saccharomyces cerevisiae」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル