TY - JOUR
T1 - Reduced αGlcNAc glycosylation on gastric gland mucin is a biomarker of malignant potential for gastric cancer, Barrett’s adenocarcinoma, and pancreatic cancer
AU - Yamanoi, Kazuhiro
AU - Nakayama, Jun
N1 - Funding Information:
Funding Grants-in-Aid for Scientific Research 15H04712 and 17K15640 from the Japan Society for the Promotion of Science.
Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Gastric gland mucin secreted from pyloric gland cells, mucous neck cells, and cardiac gland cells of the gastric mucosa harbors unique O-glycans carrying terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc), which are primarily attached to the scaffold mucin core protein MUC6. αGlcNAc acts as an antibiotic against Helicobacter pylori (H. pylori), a microbe causing gastric cancer. In addition, mice deficient in A4gnt, which encodes the enzyme α1,4-N-acetylglucosaminyltransferase (α4GnT) that catalyzes αGlcNAc biosynthesis, spontaneously develop gastric differentiated-type adenocarcinoma, even if not infected by H. pylori. Thus, αGlcNAc prevents gastric cancer as both an antibiotic and a tumor suppressor (Nakayama in Acta Histochem Cytochem 47:1–9, 2014b). Indeed, in humans αGlcNAc loss on MUC6 in differentiated-type adenocarcinoma is closely associated with poor patient prognosis (Shiratsu et al. in Cancer Sci 105:126–133, 2014). Recently, we reported reduced αGlcNAc expression on MUC6 in both pyloric gland adenoma of the stomach and chronic atrophic gastritis, in Barrett’s esophagus, and in pancreatic intraductal papillary-mucinous neoplasm (IPMN)/pancreatic intraepithelial neoplasia (PanIN), all potentially premalignant conditions. This review discusses whether relatively reduced levels of αGlcNAc in these lesions could serve as a biomarker to predict malignant potential and cancer progression.
AB - Gastric gland mucin secreted from pyloric gland cells, mucous neck cells, and cardiac gland cells of the gastric mucosa harbors unique O-glycans carrying terminal α1,4-linked N-acetylglucosamine residues (αGlcNAc), which are primarily attached to the scaffold mucin core protein MUC6. αGlcNAc acts as an antibiotic against Helicobacter pylori (H. pylori), a microbe causing gastric cancer. In addition, mice deficient in A4gnt, which encodes the enzyme α1,4-N-acetylglucosaminyltransferase (α4GnT) that catalyzes αGlcNAc biosynthesis, spontaneously develop gastric differentiated-type adenocarcinoma, even if not infected by H. pylori. Thus, αGlcNAc prevents gastric cancer as both an antibiotic and a tumor suppressor (Nakayama in Acta Histochem Cytochem 47:1–9, 2014b). Indeed, in humans αGlcNAc loss on MUC6 in differentiated-type adenocarcinoma is closely associated with poor patient prognosis (Shiratsu et al. in Cancer Sci 105:126–133, 2014). Recently, we reported reduced αGlcNAc expression on MUC6 in both pyloric gland adenoma of the stomach and chronic atrophic gastritis, in Barrett’s esophagus, and in pancreatic intraductal papillary-mucinous neoplasm (IPMN)/pancreatic intraepithelial neoplasia (PanIN), all potentially premalignant conditions. This review discusses whether relatively reduced levels of αGlcNAc in these lesions could serve as a biomarker to predict malignant potential and cancer progression.
KW - Barrett’s esophagus
KW - Chronic atrophic gastritis
KW - IPMN/PanIN
KW - Immunohistochemistry
KW - O-glycan, Pyloric gland adenoma
UR - http://www.scopus.com/inward/record.url?scp=85045310514&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045310514&partnerID=8YFLogxK
U2 - 10.1007/s00418-018-1667-8
DO - 10.1007/s00418-018-1667-8
M3 - Review article
C2 - 29658052
AN - SCOPUS:85045310514
SN - 0948-6143
VL - 149
SP - 569
EP - 575
JO - Histochemistry and Cell Biology
JF - Histochemistry and Cell Biology
IS - 6
ER -