Reduced theory for hard magnetic rods with dipole-dipole interactions

研究成果: Article査読


Hard magnetic elastomers are composites of soft elastic foundations and magnetic particles with high coercivity. We formulate a theoretical framework to predict the large deformation of a hard magnetic elastomeric rod. In the previous work, the magnetic Kirchhoff rod equations, which constitute a framework for analyzing instabilities for hard magnetic rods, have been developed and validated experimentally for negligible dipole-dipole interactions. Building on previous studies, we derive the magnetic Kirchhoff rod equations with dipole-dipole interactions. The derived equations are integro-differential equations, representing the force and moment balance along the rod centerline that include long-ranged dipole-magnetic force and torque. On the basis of its discrete numerical simulation, we systematically study the effect of the the dipole-dipole interactions strength on the large deformation of hard magnetic rods. In addition, we find that our theory can predict previous experimental results without any adjustable parameters.

ジャーナルJournal of Physics A: Mathematical and Theoretical
出版ステータスPublished - 2022 3月 11

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)


「Reduced theory for hard magnetic rods with dipole-dipole interactions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。