Reducing Recovery Error in Compressive Sensing with Limited Number of Base Stations

Prompong Pakawanwong, Vorapong Suppakitpaisarn, Liwen Xu, Naonori Kakimura

研究成果: Conference contribution

抄録

We aim to decrease a communication cost of a network that uses compressive sensing, a technique that allows us to recover global information of sparse data by using only a small set of samples. Despite efficiency of the technique, collecting information from all samples is usually costly. Because the samples from previous works usually spread around the network, setting up a number of base stations does not help reducing the cost. In this paper, we propose a method that can utilize the base stations, while aiming to minimize the recovery error of compressive sensing. Based on theorem by Xu et al., which is for cost-aware compressive sensing, we derive a mathematical program that aims to maximize the preciseness in the setting. Then, we approximate the program by a convex quadratic program and prove that the approximation ratio is 0.63. Our simulation results show that, by using the coverage, the sampling error is decreased by at most thirty times.

本文言語English
ホスト出版物のタイトル2017 IEEE Global Communications Conference, GLOBECOM 2017 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1-7
ページ数7
ISBN(電子版)9781509050192
DOI
出版ステータスPublished - 2017 7月 1
外部発表はい
イベント2017 IEEE Global Communications Conference, GLOBECOM 2017 - Singapore, Singapore
継続期間: 2017 12月 42017 12月 8

出版物シリーズ

名前2017 IEEE Global Communications Conference, GLOBECOM 2017 - Proceedings
2018-January

Other

Other2017 IEEE Global Communications Conference, GLOBECOM 2017
国/地域Singapore
CitySingapore
Period17/12/417/12/8

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Reducing Recovery Error in Compressive Sensing with Limited Number of Base Stations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル