Regeneration of the central nervous system using iPS cell-technologies

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Induced pluripotent stem (iPS) cells are pluripotent stem cells directly reprogrammed from cultured mouse fibroblast by introducing Oct3/4, Sox2, c-Myc, and Klf4. Cells obtained using this technology, which allows the ethical issues and immunological rejection associated with embryonic stem (ES) cells to be avoided, might be a clinically useful source for cell replacement therapies. We found that secondary neurospheres (SNSs) generated from various mouse iPS cell showed their neural differentiation capacity and teratoma formation after transplantation into the brain of immunodeficient NOD/SCID mice. We found that origin (source of somatic cells) of the iPS cells are the crucial determinant for the potential tumorigenicity of iPS-derived neural stem/progenitor cells and that their tumorigenicity results from the persistent presence of undifferentiated cells within the SNSs. Surprisingly, SNSs derived from c-Myc minusiPS cells generated without drug selection showed robust tumorigenesis, in spite of their potential to contribute adult chimeric mice without tumor formation. Furthermore, we examined whether the transplantation of non-tumorigenic Nanog-iPS-derived SNSs into mouse spinal cord injury (SCI) model could promote locomotor function recovery. As a result, we found that properly pre-evaluated iPS clone-derived neural stem/progenitor cells may be a promising cell source for future transplantation therapy of SCI.

本文言語English
ページ(範囲)825-826
ページ数2
ジャーナルClinical Neurology
49
11
DOI
出版ステータスPublished - 2009

ASJC Scopus subject areas

  • 臨床神経学

フィンガープリント

「Regeneration of the central nervous system using iPS cell-technologies」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル