TY - JOUR
T1 - Regulation of intracellular accumulation of mutant huntingtin by beclin 1
AU - Shibata, Mamoru
AU - Lu, Tao
AU - Furuya, Tsuyoshi
AU - Degterev, Alexei
AU - Mizushima, Noboru
AU - Yoshimori, Tamotsu
AU - MacDonald, Marcy
AU - Yankner, Bruce
AU - Yuan, Junying
PY - 2006/5/19
Y1 - 2006/5/19
N2 - Intracellular accumulation of mutant Huntingtin with expanded polyglutamine provides a context-dependent cytotoxicity critical for the pathogenesis of Huntington disease (Everett, C. M., and Wood, N. W. (2004) Brain 127, 2385-2405). Here we demonstrate that the accumulation of mutant Huntingtin is highly sensitive to the expression of beclin 1, a gene essential for autophagy. Moreover, we show that the accumulated mutant Huntingtin recruits Beclin 1 and impairs the Beclin 1-mediated long lived protein turnover. Thus, sequestration of Beclin 1 in the vulnerable neuronal population of Huntington disease patients might further reduce Beclin 1 function and autophagic degradation of mutant Huntingtin. Finally, we demonstrate that the expression of beclin 1 decreases in an age-dependent fashion in human brains. Because beclin 1 gene is haploid insufficient in regulating autophagosome function (Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G., and Levine, B. (2003) J. Clin. Invest. 112, 1809-1820; Yue, Z., Jin, S., Yang, C., Levine, A. J., and Heintz, N. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15077-15082), we propose that the age-dependent decrease of beclin 1 expression may lead to a reduction of autophagic activity during aging, which in turn promotes the accumulation of mutant Htt and the progression of the disease.
AB - Intracellular accumulation of mutant Huntingtin with expanded polyglutamine provides a context-dependent cytotoxicity critical for the pathogenesis of Huntington disease (Everett, C. M., and Wood, N. W. (2004) Brain 127, 2385-2405). Here we demonstrate that the accumulation of mutant Huntingtin is highly sensitive to the expression of beclin 1, a gene essential for autophagy. Moreover, we show that the accumulated mutant Huntingtin recruits Beclin 1 and impairs the Beclin 1-mediated long lived protein turnover. Thus, sequestration of Beclin 1 in the vulnerable neuronal population of Huntington disease patients might further reduce Beclin 1 function and autophagic degradation of mutant Huntingtin. Finally, we demonstrate that the expression of beclin 1 decreases in an age-dependent fashion in human brains. Because beclin 1 gene is haploid insufficient in regulating autophagosome function (Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G., and Levine, B. (2003) J. Clin. Invest. 112, 1809-1820; Yue, Z., Jin, S., Yang, C., Levine, A. J., and Heintz, N. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15077-15082), we propose that the age-dependent decrease of beclin 1 expression may lead to a reduction of autophagic activity during aging, which in turn promotes the accumulation of mutant Htt and the progression of the disease.
UR - http://www.scopus.com/inward/record.url?scp=33744916798&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744916798&partnerID=8YFLogxK
U2 - 10.1074/jbc.M600364200
DO - 10.1074/jbc.M600364200
M3 - Article
C2 - 16522639
AN - SCOPUS:33744916798
VL - 281
SP - 14474
EP - 14485
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 20
ER -