TY - JOUR
T1 - Relationship between isometric contraction intensity and muscle hardness assessed by ultrasound strain elastography
AU - Inami, Takayuki
AU - Tsujimura, Toru
AU - Shimizu, Takuya
AU - Watanabe, Takemasa
AU - Lau, Wing Yin
AU - Nosaka, Kazunori
N1 - Publisher Copyright:
© 2017, Springer-Verlag Berlin Heidelberg.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Introduction: Ultrasound elastography is used to assess muscle hardness or stiffness; however, no previous studies have validated muscle hardness measures using ultrasound strain elastography (SE). This study investigated the relationship between plantar flexor isometric contraction intensity and gastrocnemius hardness assessed by SE. We hypothesised that the muscle would become harder linearly with an increase in the contraction intensity of the plantar flexors. Methods: Fifteen young women (20.1 ± 0.8 years) performed isometric contractions of the ankle plantar flexors at four different intensities (25, 50, 75, 100% of maximal voluntary contraction force: MVC) at 0° plantar flexion. Using SE images, the strain ratio (SR) between the muscle and an acoustic coupler (elastic modulus 22.6 kPa) placed over the skin was calculated (muscle/coupler); pennation angle and muscle thickness were measured for the resting and contracting conditions. Results: SR decreased with increasing contraction intensity from rest (1.28 ± 0.20) to 25% (0.99 ± 0.21), 50% (0.61 ± 0.15), 75% (0.34 ± 0.1) and 100% MVC (0.20 ± 0.05). SR decreased linearly (P < 0.05) with increasing MVC from rest to 75% MVC, but levelled off from 75 and 100% MVC. SR was negatively correlated with pennation angle (r = −0.80, P < 0.01) and muscle thickness (r= −0.78, P< 0.01). Conclusion: SR appears to represent muscle hardness changes in response to contraction intensity changes, in the assumption that the gastrocnemius muscle contraction intensity is proportional to the plantar flexion intensity. We concluded that gastrocnemius muscle hardness changes could be validly assessed by SR, and the force–hardness relationship was not linear.
AB - Introduction: Ultrasound elastography is used to assess muscle hardness or stiffness; however, no previous studies have validated muscle hardness measures using ultrasound strain elastography (SE). This study investigated the relationship between plantar flexor isometric contraction intensity and gastrocnemius hardness assessed by SE. We hypothesised that the muscle would become harder linearly with an increase in the contraction intensity of the plantar flexors. Methods: Fifteen young women (20.1 ± 0.8 years) performed isometric contractions of the ankle plantar flexors at four different intensities (25, 50, 75, 100% of maximal voluntary contraction force: MVC) at 0° plantar flexion. Using SE images, the strain ratio (SR) between the muscle and an acoustic coupler (elastic modulus 22.6 kPa) placed over the skin was calculated (muscle/coupler); pennation angle and muscle thickness were measured for the resting and contracting conditions. Results: SR decreased with increasing contraction intensity from rest (1.28 ± 0.20) to 25% (0.99 ± 0.21), 50% (0.61 ± 0.15), 75% (0.34 ± 0.1) and 100% MVC (0.20 ± 0.05). SR decreased linearly (P < 0.05) with increasing MVC from rest to 75% MVC, but levelled off from 75 and 100% MVC. SR was negatively correlated with pennation angle (r = −0.80, P < 0.01) and muscle thickness (r= −0.78, P< 0.01). Conclusion: SR appears to represent muscle hardness changes in response to contraction intensity changes, in the assumption that the gastrocnemius muscle contraction intensity is proportional to the plantar flexion intensity. We concluded that gastrocnemius muscle hardness changes could be validly assessed by SR, and the force–hardness relationship was not linear.
KW - Gastrocnemius
KW - Muscle force
KW - Muscle thickness
KW - Pennation angle
KW - Strain ratio
UR - http://www.scopus.com/inward/record.url?scp=85015017933&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015017933&partnerID=8YFLogxK
U2 - 10.1007/s00421-016-3528-2
DO - 10.1007/s00421-016-3528-2
M3 - Article
C2 - 28290056
AN - SCOPUS:85015017933
VL - 117
SP - 843
EP - 852
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
SN - 1439-6319
IS - 5
ER -