TY - JOUR
T1 - Resistance mechanisms of cancer cells to the novel vacuolar H+-ATPase inhibitor archazolid B
AU - Hamm, Rebecca
AU - Sugimoto, Yoshikazu
AU - Steinmetz, Heinrich
AU - Efferth, Thomas
N1 - Publisher Copyright:
© 2014 Springer Science+Business Media New York.
PY - 2014/10
Y1 - 2014/10
N2 - Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. Archazolid B, a novel vacuolar H+-ATPase inhibitor, displayed cytotoxicity in the low nanomolar range on a panel of different tumor cell lines. First, we investigated tumor-specific cytotoxicity of archazolid B by comparing cancer to non-cancer cells. Breast, liver and colon cancer cells displayed higher drug sensitivity than corresponding non-tumorous cells, whereas leukemia cell lines were as sensitive as peripheral mononuclear blood cells. Investigating classical drug resistance mechanisms, archazolid B was identified as a possible substrate of the ABC transporters ABCB1 (P-glycoprotein) and ABCG2 (BCRP), whereas collateral sensitivity was observed in ABCB5-expressing cells. Our results pointed to a possible binding competition of archazolid B with verapamil on P-glycoprotein. However, archazolid B did not reverse resistance towards doxorubicin indicating that it might be a substrate but not an inhibitor of P-glycoprotein mediated transport. Furthermore, the cytotoxicity of archazolid B was independent of the p53 status of the cell. Mechanisms of aquired resistance were investigated establishing an archazolid B-resistant MCF-7 cell line. Interestingly, drug resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolids. Instead, long-term treatment with archazolid B led to a slight overexpression of ABCB1 and a significant overexpression of the epidermal growth factor receptor and reduced cell growth, all of which can be assumed to contribute to archazolid B resistance.
AB - Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. Archazolid B, a novel vacuolar H+-ATPase inhibitor, displayed cytotoxicity in the low nanomolar range on a panel of different tumor cell lines. First, we investigated tumor-specific cytotoxicity of archazolid B by comparing cancer to non-cancer cells. Breast, liver and colon cancer cells displayed higher drug sensitivity than corresponding non-tumorous cells, whereas leukemia cell lines were as sensitive as peripheral mononuclear blood cells. Investigating classical drug resistance mechanisms, archazolid B was identified as a possible substrate of the ABC transporters ABCB1 (P-glycoprotein) and ABCG2 (BCRP), whereas collateral sensitivity was observed in ABCB5-expressing cells. Our results pointed to a possible binding competition of archazolid B with verapamil on P-glycoprotein. However, archazolid B did not reverse resistance towards doxorubicin indicating that it might be a substrate but not an inhibitor of P-glycoprotein mediated transport. Furthermore, the cytotoxicity of archazolid B was independent of the p53 status of the cell. Mechanisms of aquired resistance were investigated establishing an archazolid B-resistant MCF-7 cell line. Interestingly, drug resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolids. Instead, long-term treatment with archazolid B led to a slight overexpression of ABCB1 and a significant overexpression of the epidermal growth factor receptor and reduced cell growth, all of which can be assumed to contribute to archazolid B resistance.
KW - ABC transporters
KW - Drug resistance
KW - EGFR
KW - Myxobacterial compounds
KW - p53
UR - http://www.scopus.com/inward/record.url?scp=84930745207&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930745207&partnerID=8YFLogxK
U2 - 10.1007/s10637-014-0134-1
DO - 10.1007/s10637-014-0134-1
M3 - Article
C2 - 25065443
AN - SCOPUS:84930745207
SN - 0167-6997
VL - 32
SP - 893
EP - 903
JO - Investigational New Drugs
JF - Investigational New Drugs
IS - 5
M1 - 32
ER -