Rigid syntomic cohomology and p-adic polylogarithms

研究成果: Article査読

8 被引用数 (Scopus)

抄録

The main purpose of this paper is to construct the p-adic realization of the classical polylogarithm following the method of Beilinson and Deligne as explained by Huber and Wildeshaus. A simplicial construction of the p-adic polylogarithm was previously obtained by Somekawa. In this paper, we will give a sheaf theoretic interpretation of this construction. In particular, we will give an interpretation of the p-adic polylogarithm as an object in the p-adic analogue of the category of variation of mixed Hodge structures. We will also calculate the restriction of this object to torsion points, and will prove a result which is compatible with the results of Gros-Kurihara, Gros and Somekawa.

本文言語English
ページ(範囲)205-237
ページ数33
ジャーナルJournal fur die Reine und Angewandte Mathematik
529
DOI
出版ステータスPublished - 2000 1月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Rigid syntomic cohomology and p-adic polylogarithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル