Robust bifurcation analysis based on the Nyquist stability criterion

Masaki Inoue, Jun Ichi Imura, Kenji Kashima, Kazuyuki Aihara

研究成果: Conference contribution

8 被引用数 (Scopus)

抄録

In this paper, we propose a novel method for robust bifurcation analysis of systems with dynamic uncertainties. First, we formulate a robust bifurcation analysis problem for parameter-dependent systems with norm-bounded uncertainties. Next, to solve this problem, we define a new concept of robust hyperbolicity of an equilibrium that for any uncertainty an uncertain linear system has no neutral pole and the number of unstable poles is constant. A necessary and sufficient condition for the robust hyperbolicity is derived from the Nyquist stability criterion. On the basis of the condition, we propose a method for identifying the region that consists of all potential bifurcation boundaries. Finally, robustness of a gene-metabolic oscillator with dynamic uncertainties is investigated by using the proposed method.

本文言語English
ホスト出版物のタイトル2013 IEEE 52nd Annual Conference on Decision and Control, CDC 2013
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1768-1773
ページ数6
ISBN(印刷版)9781467357173
DOI
出版ステータスPublished - 2013
外部発表はい
イベント52nd IEEE Conference on Decision and Control, CDC 2013 - Florence, Italy
継続期間: 2013 12月 102013 12月 13

出版物シリーズ

名前Proceedings of the IEEE Conference on Decision and Control
ISSN(印刷版)0743-1546
ISSN(電子版)2576-2370

Other

Other52nd IEEE Conference on Decision and Control, CDC 2013
国/地域Italy
CityFlorence
Period13/12/1013/12/13

ASJC Scopus subject areas

  • 制御およびシステム工学
  • モデリングとシミュレーション
  • 制御と最適化

フィンガープリント

「Robust bifurcation analysis based on the Nyquist stability criterion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル