Robust extraction of local structures by the minimum β-divergence method

Md Nurul Haque Mollah, Nayeema Sultana, Mihoko Minami, Shinto Eguchi

研究成果: Article査読

25 被引用数 (Scopus)


This paper discusses a new highly robust learning algorithm for exploring local principal component analysis (PCA) structures in which an observed data follow one of several heterogeneous PCA models. The proposed method is formulated by minimizing β-divergence. It searches a local PCA structure based on an initial location of the shifting parameter and a value for the tuning parameter β. If the initial choice of the shifting parameter belongs to a data cluster, then the proposed method detects the local PCA structure of that data cluster, ignoring data in other clusters as outliers. We discuss the selection procedures for the tuning parameter β and the initial value of the shifting parameter μ in this article. We demonstrate the performance of the proposed method by simulation. Finally, we compare the proposed method with a method based on a finite mixture model.

ジャーナルNeural Networks
出版ステータスPublished - 2010 3月

ASJC Scopus subject areas

  • 認知神経科学
  • 人工知能


「Robust extraction of local structures by the minimum β-divergence method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。