Saturated Reflection Detection for Reflection Removal Based on Convolutional Neural Network

Taichi Yoshida, Isana Funahashi, Naoki Yamashita, Masaaki Ikehara

研究成果: Article査読

抄録

Single image reflection removal is a technique that removes undesirable reflections, which occur due to glass, from images. Various methods of reflection removal have been proposed, but unfortunately, they usually fail to remove reflections particularly with very high pixel values. In this paper, we define these saturated reflections and their characteristics, as well as discuss and propose a removal system. The proposed system detects areas of saturated reflections based on our proposed model of convolutional neural networks and restores them by a conventional method of image estimation. In our experiments, the proposed system shows better peak-signal-to-noise ratio scores and perceptual quality than conventional methods of reflection removal.

本文言語English
ページ(範囲)39800-39809
ページ数10
ジャーナルIEEE Access
10
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)
  • 電子工学および電気工学

フィンガープリント

「Saturated Reflection Detection for Reflection Removal Based on Convolutional Neural Network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル