抄録
We prove existence of scaling limits of sequences of functions defined by the recursion relation w′n+1(ϰ)= -wn(ϰ)2. which is a successive approximation to w′(ϰ)= -wn(ϰ)2 a simplest non-linear ordinary differential equation whose solutions have moving singularities. Namely, the sequence approaches the exact solution as n→ √ in an asymptotically conformal way, [formula omitted], for a sequence of numbers {qn} and a function [formula omitted]. We also discuss implication of the results in terms of random sequential bisections of a rod.
本文言語 | English |
---|---|
ページ(範囲) | 291-319 |
ページ数 | 29 |
ジャーナル | Funkcialaj Ekvacioj |
巻 | 49 |
号 | 2 |
DOI | |
出版ステータス | Published - 2006 |
外部発表 | はい |
ASJC Scopus subject areas
- 分析
- 代数と数論
- 幾何学とトポロジー