Seasonal Variation of Wet Deposition of Black Carbon at Ny-Ålesund, Svalbard

Tatsuhiro Mori, Yutaka Kondo, Sho Ohata, Kumiko Goto-Azuma, Kaori Fukuda, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Atsushi Yoshida, Makoto Koike, P. R. Sinha, Naga Oshima, Hitoshi Matsui, Yutaka Tobo, Masanori Yabuki, Wenche Aas

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Black carbon (BC) aerosol deposited in and onto Arctic snow increases the snow's absorption of solar radiation and accelerates snowmelt. Concentrations of BC in the Arctic atmosphere and snow are controlled by wet deposition; however, details of this process are poorly understood owing to the scarcity of time-resolved measurements of BC in hydrometeors. We measured mass concentrations of BC in hydrometeors (CMBC) and in air (MBC) with 16% and 15% accuracies, respectively, at Ny-Ålesund, Svalbard during 2012–2019. Median monthly MBC and CMBC values showed similar seasonal variations, being high in winter-spring and low in summer. Median monthly BC wet deposition mass flux (FMBC) was highest in winter and lowest in summer, associated with seasonal patterns of CMBC and precipitation. Seasonally averaged BC size distributions in hydrometeors were similar except for summer. Measurements of MBC and CMBC in spring 2017 showed a size-independent removal efficiency, indicating that BC-containing particles were efficiently activated into cloud droplets. These observations at Ny-Ålesund were compared with observations at Barrow, Alaska, during 2013–2017. The near-surface MBC at Ny-Ålesund and Barrow had similar seasonal patterns; however, the two sites differed in CMBC and FMBC. In summer, CMBC was low at Ny-Ålesund but moderate at Barrow, likely reflecting differences in MBC in the lower troposphere. Seasonally averaged BC size distributions in hydrometeors were similar at both sites, suggesting that average BC size distributions are similar in the Arctic lower troposphere. The efficiency of BC removal tends to be size-independent during transport, leading to the observed similarity.

本文言語English
論文番号e2020JD034110
ジャーナルJournal of Geophysical Research: Atmospheres
126
12
DOI
出版ステータスPublished - 2021 6月 27
外部発表はい

ASJC Scopus subject areas

  • 大気科学
  • 地球物理学
  • 地球惑星科学(その他)
  • 宇宙惑星科学

フィンガープリント

「Seasonal Variation of Wet Deposition of Black Carbon at Ny-Ålesund, Svalbard」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル