Selecting the regularization parameters in high-dimensional panel data models: Consistency and efficiency

Tomohiro Ando, Jushan Bai

研究成果: Article

2 引用 (Scopus)

抜粋

This article considers panel data models in the presence of a large number of potential predictors and unobservable common factors. The model is estimated by the regularization method together with the principal components procedure. We propose a panel information criterion for selecting the regularization parameter and the number of common factors under a diverging number of predictors. Under the correct model specification, we show that the proposed criterion consistently identifies the true model. If the model is instead misspecified, the proposed criterion achieves asymptotically efficient model selection. Simulation results confirm these theoretical arguments.

元の言語English
ページ(範囲)1-29
ページ数29
ジャーナルEconometric Reviews
DOI
出版物ステータスAccepted/In press - 2016 3 15

ASJC Scopus subject areas

  • Economics and Econometrics

フィンガープリント Selecting the regularization parameters in high-dimensional panel data models: Consistency and efficiency' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用