Selective Coherent Anti-Stokes Raman Scattering Microscopy Employing Dual-Wavelength Nanofocused Ultrafast Plasmon Pulses

Keita Tomita, Yasuhiro Kojima, Fumihiko Kannari

研究成果: Article査読

19 被引用数 (Scopus)

抄録

Ultrafast surface plasmon polariton (SPP) nanofocusing on a plasmonic metal tapered tip with femtosecond laser pulses enables background-free localized excitation beyond the diffraction limit. We demonstrate simultaneous nanofocusing of ultrafast SPP pulses at 440 and 800 nm, which were coupled with a common diffraction grating structure fabricated on an aluminum (Al) tapered tip, to the tip apex with a radius of ?35 nm. We achieved selective coherent anti-Stokes Raman scattering (CARS) microscopy that combined an 800 nm (ω) SPP pump pulse, which achieves selective vibrational excitation by spectral focusing, and a 440 nm (2ω) SPP probe pulse. Raman intensity of this novel 2ω-CARS increased by a factor of 3.96 at the G-band and 4.00 at the 2D-band compared with that with ω-CARS for the monolayer graphene. The 2ω-CARS imaging method was applied for imaging a multiwalled carbon nanotube at the D-, G-, and 2D-bands. This dual-wavelength nanofocusing will open up new nanoscale microspectroscopy and optical excitation at the tip apex, such as sum frequency mixing, two-photon excitation.

本文言語English
ページ(範囲)1366-1372
ページ数7
ジャーナルNano Letters
18
2
DOI
出版ステータスPublished - 2018 2月 14

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 化学 (全般)
  • 材料科学(全般)
  • 凝縮系物理学
  • 機械工学

フィンガープリント

「Selective Coherent Anti-Stokes Raman Scattering Microscopy Employing Dual-Wavelength Nanofocused Ultrafast Plasmon Pulses」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル