Self-Avoiding Paths on the Three Dimensional Sierpinski Gasket

Kumiko Hattori, Tetsuya Hattori, Shigeo Kusuoka

研究成果: Article査読

13 被引用数 (Scopus)

抄録

We study self-avoiding paths on the three-dimensional pre-Sierpinski gasket. We prove the existence of the limit distribution of the scaled path length, the exponent for the mean square displacement, and the continuum limit. We also prove that the continuum-limit process is a self-avoiding process on the three-dimensional Sierpinski gasket, and that a path almost surely has infinitely fine creases.

本文言語English
ページ(範囲)455-509
ページ数55
ジャーナルPublications of the Research Institute for Mathematical Sciences
29
3
DOI
出版ステータスPublished - 1993
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Self-Avoiding Paths on the Three Dimensional Sierpinski Gasket」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル