Self-repelling walk on the Sierpiński gasket

B. M. Hambly, Kumiko Hattori, Tetsuya Hattori

研究成果: Article査読

6 被引用数 (Scopus)

抄録

We construct a one-parameter family of self-repelling processes on the Sierpiński gasket, by taking continuum limits of self-repelling walks on the pre-Sierpiński gaskets. We prove that our model interpolates between the Brownian motion and the self-avoiding process on the Sierpiński gasket. Namely, we prove that the process is continuous in the parameter in the sense of convergence in law, and that the order of Hölder continuity of the sample paths is also continuous in the parameter. We also establish a law of the iterated logarithm for the self-repelling process. Finally we show that this approach yields a new class of one-dimensional self-repelling processes.

本文言語English
ページ(範囲)1-25
ページ数25
ジャーナルProbability Theory and Related Fields
124
1
DOI
出版ステータスPublished - 2002 9月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Self-repelling walk on the Sierpiński gasket」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル