Semiparametric Bayes instrumental variable estimation with many weak instruments

研究成果: Article査読

抄録

We develop a new semiparametric Bayes instrumental variables estimation method. We employ the form of the regression function of the first-stage equation, and the disturbances are modeled nonparametrically to achieve better predictive power of the endogenous variables, whereas we use parametric formulation in the second-stage equation, which is of interest in inference. Our simulation studies show that under small sample sizes, the proposed method obtains more efficient estimates and very precise credible intervals compared with existing IV methods with smaller mean squared error. We applied our proposed method to a Mendelian randomization dataset where a large number of instruments are available and semiparametric specification is appropriate. We obtained statistically significant results that cannot be obtained by the existing methods, including standard Bayesian IV.

本文言語English
論文番号e350
ジャーナルStat
10
1
DOI
出版ステータスPublished - 2021 12月

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Semiparametric Bayes instrumental variable estimation with many weak instruments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル