Shaping tissues by balancing active forces and geometric constraints

Jasper Foolen, Tadahiro Yamashita, Philip Kollmannsberger

研究成果: Article査読

17 被引用数 (Scopus)


The self-organization of cells into complex tissues during growth and regeneration is a combination of physical-mechanical events and biochemical signal processing. Cells actively generate forces at all stages in this process, and according to the laws of mechanics, these forces result in stress fields defined by the geometric boundary conditions of the cell and tissue. The unique ability of cells to translate such force patterns into biochemical information and vice versa sets biological tissues apart from any other material. In this topical review, we summarize the current knowledge and open questions of how forces and geometry act together on scales from the single cell to tissues and organisms, and how their interaction determines biological shape and structure. Starting with a planar surface as the simplest type of geometric constraint, we review literature on how forces during cell spreading and adhesion together with geometric constraints impact cell shape, stress patterns, and the resulting biological response. We then move on to include cell-cell interactions and the role of forces in monolayers and in collective cell migration, and introduce curvature at the transition from flat cell sheets to three-dimensional (3D) tissues. Fibrous 3D environments, as cells experience them in the body, introduce new mechanical boundary conditions and change cell behaviour compared to flat surfaces. Starting from early work on force transmission and collagen remodelling, we discuss recent discoveries on the interaction with geometric constraints and the resulting structure formation and network organization in 3D. Recent literature on two physiological scenarios - embryonic development and bone - is reviewed to demonstrate the role of the force-geometry balance in living organisms. Furthermore, the role of mechanics in pathological scenarios such as cancer is discussed. We conclude by highlighting common physical principles guiding cell mechanics, tissue patterning and matrix organization under geometric constraints across multiple length and time scales.

ジャーナルJournal of Physics D: Applied Physics
出版ステータスPublished - 2015 12月 15

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 音響学および超音波学
  • 表面、皮膜および薄膜


「Shaping tissues by balancing active forces and geometric constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。