SHARED TRANSFORMER ENCODER WITH MASK-BASED 3D MODEL ESTIMATION FOR CONTAINER MASS ESTIMATION

Tomoya Matsubara, Seitaro Otsuki, Yuiga Wada, Haruka Matsuo, Takumi Komatsu, Yui Iioka, Komei Sugiura, Hideo Saito

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

For human-safe robot control in human-to-robot handover, the physical properties of containers and fillings should be accurately estimated. In this paper, we propose a Transformer encoder that shares the same architecture and parameters for filling level and type estimation. We also propose a mask-based geometric algorithm to estimate 3D models of containers for the estimation of their capacity and dimensions. We further use these estimations to estimate their mass in a Convolutional Neural Network model. Experiments show that our Transformer model produced encouraging results in both estimations. While challenges remain in our mask-based algorithm and Convolutional Neural Network model, their results revealed several ways for improvement.

本文言語English
ホスト出版物のタイトル2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ9142-9146
ページ数5
ISBN(電子版)9781665405409
DOI
出版ステータスPublished - 2022
イベント47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
継続期間: 2022 5月 232022 5月 27

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
国/地域Singapore
CityVirtual, Online
Period22/5/2322/5/27

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「SHARED TRANSFORMER ENCODER WITH MASK-BASED 3D MODEL ESTIMATION FOR CONTAINER MASS ESTIMATION」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル