SHORTEST RECONFIGURATION of PERFECT MATCHINGS VIA ALTERNATING CYCLES

I. T.O. Takehiro, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Yoshio Okamoto

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect matching to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar.

本文言語English
ページ(範囲)1102-1123
ページ数22
ジャーナルSIAM Journal on Discrete Mathematics
36
2
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「SHORTEST RECONFIGURATION of PERFECT MATCHINGS VIA ALTERNATING CYCLES」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル