Shrinkage tuning based on an unbiased MSE estimate for sparsity-aware adaptive filtering

Masao Yamagishi, Masahiro Yukawa, Isao Yamada

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Effective utilization of sparsity of the system to be estimated is a key to achieve excellent adaptive filtering performances. This can be realized by the adaptive proximal forward-backward splitting (APFBS) with carefully chosen parameters. In this paper, we propose a systematic parameter tuning based on a minimization principle of an unbiased MSE estimate. Thanks to the piecewise quadratic structure of the proposed MSE estimate, we can obtain its minimizer with low computational load. A numerical example demonstrates the efficacy of the proposed parameter tuning by its excellent performance over a broader range of SNR than a heuristic parameter tuning of the APFBS.

本文言語English
ホスト出版物のタイトル2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
出版社Institute of Electrical and Electronics Engineers Inc.
ページ5477-5481
ページ数5
ISBN(印刷版)9781479928927
DOI
出版ステータスPublished - 2014
イベント2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
継続期間: 2014 5月 42014 5月 9

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

Other

Other2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
国/地域Italy
CityFlorence
Period14/5/414/5/9

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Shrinkage tuning based on an unbiased MSE estimate for sparsity-aware adaptive filtering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル