Sign-solvable linear complementarity problems

研究成果: Article査読

7 被引用数 (Scopus)

抄録

This paper presents a connection between qualitative matrix theory and linear complementarity problems (LCPs). An LCP is said to be sign-solvable if the set of the sign patterns of the solutions is uniquely determined by the sign patterns of the given coefficients. We provide a characterization for sign-solvable LCPs such that the coefficient matrix has nonzero diagonals, which can be tested in polynomial time. This characterization leads to an efficient combinatorial algorithm to find the sign pattern of a solution for these LCPs. The algorithm runs in O (γ) time, where γ is the number of the nonzero coefficients.

本文言語English
ページ(範囲)606-616
ページ数11
ジャーナルLinear Algebra and Its Applications
429
2-3
DOI
出版ステータスPublished - 2008 7 15
外部発表はい

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Numerical Analysis
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

フィンガープリント 「Sign-solvable linear complementarity problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル