Sign-solvable linear complementarity problems

研究成果: Conference contribution

抄録

This paper presents a connection between qualitative matrix theory and linear complementarity problems (LCPs). An LCP is said to be sign-solvable if the set of the sign patterns of the solutions is uniquely determined by the sign patterns of the given coefficients. We provide a characterization for sign-solvable LCPs such that the coefficient matrix has nonzero diagonals, which can be tested in polynomial time. This characterization leads to an efficient combinatorial algorithm to find the sign pattern of a solution for these LCPs. The algorithm runs in O(γ) time, where γ is the number of the nonzero coefficients.

本文言語English
ホスト出版物のタイトルInteger Programming and Combinatorial Optimization - 12th International IPCO Conference, Proceedings
出版社Springer Verlag
ページ397-409
ページ数13
ISBN(印刷版)9783540727910
DOI
出版ステータスPublished - 2007
外部発表はい
イベント12th International Conference on Integer Programming and Combinatorial Optimization, IPCO XII - Ithaca, NY, United States
継続期間: 2007 6月 252007 6月 27

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4513 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other12th International Conference on Integer Programming and Combinatorial Optimization, IPCO XII
国/地域United States
CityIthaca, NY
Period07/6/2507/6/27

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Sign-solvable linear complementarity problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル