Signal extrapolation based on generalized singular value decomposition using prior information

Akira Sano, Hiroyuki Tsuji, Hiromitsu Ohmori

研究成果: Conference contribution

抄録

Extrapolation of band-limited signals in noisy conditions is an ill-posed least-squares estimation problem. To stabilize the extrapolation, derivative smoothness of signals to be extrapolated is introduced to a weighted-least-squares error criterion as prior information. One can adjust the weighting of the smoothness by employing multiple regularization parameters to be determined optimally. The extrapolated signal is given by using the generalized singular value decomposition, which is modified by the regularization. On the basis of a Bayesian statistical approach, a new information-theoretic criterion is presented to determined the optimal regularization parameters, which can give optimal balance between the smoothness prior and the observed signal data to attain stabilized extrapolation by optimal regularization.

本文言語English
ホスト出版物のタイトルProceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
出版社Publ by IEEE
ページ1749-1752
ページ数4
ISBN(印刷版)0780300033
DOI
出版ステータスPublished - 1991
外部発表はい
イベントProceedings of the 1991 International Conference on Acoustics, Speech, and Signal Processing - ICASSP 91 - Toronto, Ont, Can
継続期間: 1991 5月 141991 5月 17

出版物シリーズ

名前Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
3
ISSN(印刷版)0736-7791

Other

OtherProceedings of the 1991 International Conference on Acoustics, Speech, and Signal Processing - ICASSP 91
CityToronto, Ont, Can
Period91/5/1491/5/17

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Signal extrapolation based on generalized singular value decomposition using prior information」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル