Similarity-ranking method based on semantic computing for a context-aware system

Motoki Yokoyama, Yasushi Kiyoki, Tetsuya Mita

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Among the enormous variety of data in recent years, transportation data contain significant potential for understanding the information requirements and intention of passengers. In this paper, we propose a new information ranking method for passenger intention prediction and service recommendation. The method includes three main features, which include (1) predicting the intention of a used based on his/her current context, (2) selecting a subspace for service recommendation, and (3) ranking the services by the highest relevant order. By comparing the predicted results with a straightforward computation method, the experimental studies show the effectiveness and efficiency of the proposed method. The paper also describes the simplicity of our method over existing subspace selection methods.

本文言語English
ホスト出版物のタイトル2016 International Conference on Knowledge Creation and Intelligent Computing, KCIC 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ページ21-27
ページ数7
ISBN(電子版)9781509052318
DOI
出版ステータスPublished - 2017 3月 20
イベント5th International Conference on Knowledge Creation and Intelligent Computing, KCIC 2016 - Manado, Indonesia
継続期間: 2016 11月 152016 11月 17

Other

Other5th International Conference on Knowledge Creation and Intelligent Computing, KCIC 2016
国/地域Indonesia
CityManado
Period16/11/1516/11/17

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 人工知能

フィンガープリント

「Similarity-ranking method based on semantic computing for a context-aware system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル